

CHEMISTRY WEDNESDAYS

24 marzo, 7 aprile e 21 aprile 2021

Reactions on the computer. Geometries and Mechanism Corrado Bacchiocchi H-Bonded Supramolecular architectures Anion binding with biphenyl-bis-urea derivatives

NJC

View Article Online View Journal | View Issue

Cite this: New J. Chem., 2020, 44, 16294

Received 21st July 2020, Accepted 17th August 2020 DOI: 10.1039/d0nj03670f

rsc.li/njc

Anion binding with biphenyl-bis-urea derivatives: solution and solid-state studies[†]

Toni Grgurić,^a Mario Cetina, ^b Manuel Petroselli,^c Corrado Bacchiocchi, ^d Zoran Dzolić ^{*} and Massimo Cametti ^{*}

In this work, we have synthesized and characterized bis-urea derivatives **1–3**, featuring a biphenyl spacer, and studied their anion binding properties in DMSO solution and in the solid state. In solution, 1:1 complexes were observed with association constant K values in the 10^3-10^4 M⁻¹ range with a general preference for acetate over dihydrogenphosphate for all three receptors. We were also able to obtain and characterize, by X-ray diffraction on single crystals, ten receptor–anion complexes including acetate and dihydrogenphosphate, as well as monohydrogenphosphate, halides and the nitrate ion. Linear (anion–receptor)_n arrays, porous frameworks and non-centrosymmetric structures were observed and described in detail.

Introduction

acetate) or two bifurcate HBs to monoatomic anionic species

Mechanisms of catalysis in solution

Fukui reactivity indices

- f⁺: accepting e⁻
- f⁻: donating e⁻

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

Nitrogen lone pair in the Cu--BnNH₂ coordination

Nitrogen lone pair in the Cu--BnNH₂ coordination

Nitrogen lone pair in the Cu--BnNH₂ coordination

unchanged in the triple-bond coordination

NBO Analysis

NBO Analysis

π coordination of Cu-BnNH₂ with triple bond

NBO Analysis of the C—H bond
NBO Analysis of the C—H bond

NBO Analysis of the C—H bond

Cu(I) acetylide deprotonation

Deprotonation

Deprotonation

Deprotonation

Deprotonation – Reaction Coordinate

Deprotonation Potential Energy Barrier (PM6)

Deprotonation Potential Energy Barrier (DFT)

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

Fukui reactivity indices f⁺: accepting e⁻ f⁻: donating e⁻

The **Cu–CCPh bond** has ionic character

The Cu⁺ ion can easily move in and out of the Ph-acetylene axis

+0.49

-0.43

C—C bond formation towards Propargylamine synthesis

key C—C bond formation

C—**C** bond formation Potential Energy Barrier (DFT)

Propargylamine protonation

Propargylamine protonation

Mechanisms of heterogeneous catalysis

X = CI, Br

Scheme 2 Catalytic transformation of halogenated epoxides into the corresponding cyclic carbonates examined in this study.

Catalytic synth. of five-membered cyclic carbonate from epoxide

Catalytic synth. of five-member cyclic carbonate from epoxide

 CO_2 -O attacks the EPO-Cl terminal C on the same side of the detaching O. This is ideal for the subsequent cyclization

Catalytic synth. of five-member cyclic carbonate from epoxide

 CO_2 -O attacks the EPO-Cl terminal C on the same side of the detaching O. This is ideal for the subsequent cyclization

Steric clashes between EPO-Cl and the MOF structure when trying to "insert" a possible TS inside Insertion of EPO-Cl into partially relaxed MOF (only Zn fixed), vdW rendering

C. Cimarelli et al.

Activation of Primary Amines by Copper(I)-Based Lewis Acid Promoters in the Solventless Synthesis of Secondary Propargylamines

Cristina Cimarelli^{*} a[®] Federica Navazio^a Federico V. Rossi^a Fabio Del Bello^b Enrico Marcantoni^a

 ^a School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy cristina.cimarelli@unicam.it
^b School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy

Method A: 9 examples up to 62% yield i) CuSO₄ (30 mol%)/Nal (60 mol%), PhCOOH (5 mol%), solventless, N₂, 80 °C Method B: 20 examples up to 95% yield ii) MgSO₄, CeCl₃•7H₂O (30 mol%), solventless, N₂, r.t., 0.25 h iii) Cul (30 mol%), solventless, N₂, 40 °C

Received: 12.11.2018 Accepted after revision: 24.01.2019 Published online: 11.03.2019 DOI: 10.1055/s-0037-1612253; Art ID: ss-2018-t0759-op

Abstract Primary amines are activated by copper(I)-based Lewis acid promoters in an A³-coupling one-pot solventless reaction with alde-

Since the pioneering work of Li and Wei²⁵ the issue of the synthesis of propargylamines by direct addition of terminal alkynes to imines, defined in short as A³ coupling, has been addressed in different ways, under solvent or solventless conditions, by metal catalysis or organocatalysis, and also in an enantioselective manner.^{26–29}

INORGANIC CHEMISTRY

FRONTIERS

RESEARCH ARTICLE

View Article Online View Journal | View Issue

Cite this: *Inorg. Chem. Front.*, 2019, **6**, 533

Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates†

Rebecca Vismara, D^a Giulia Tuci, ^{b,c} Nello Mosca,^d Kostiantyn V. Domasevitch, ^e Corrado Di Nicola,^f Claudio Pettinari, ^{b,d} Giuliano Giambastiani, ^{b,g,h} Simona Galli ^{*a,h} and Andrea Rossin ^{*b,h}

The novel Metal–Organic Frameworks (MOFs) $M(BPZNH_2)$ (M = Zn, Ni, Cu) were prepared from the reaction of the corresponding metal acetates $M(OAc)_2 \cdot nH_2O$ and the organic linker 3-amino-4,4'-bipyrazole (H₂BPZNH₂) under solvothermal conditions. H₂BPZNH₂ was obtained straightforwardly from the reduction of the related nitro-compound using hydrazine as a reducing agent. The Zn(II) polymer is characterized by a 3D porous network featuring tetrahedral metallic nodes and bridging BPZNH₂²⁻ anions defining the vertices and edges of square channels. The isostructural Ni(II) and Cu(II) MOFs show square-planar metallic nodes and bridging BPZNH₂²⁻ spacers at the vertices and edges of the rhombic channels of a 3D porous framework. All the MOFs were characterized in the solid state [(VT)-PXRD, IR, TGA-DTG]. The textural property analysis revealed that